

International Journal of Pharmacognosy and Clinical Research

ISSN Print: 2664-763X ISSN Online: 2664-7648 Impact Factor: RJIF 8.25 IJPCR 2025; 7(2): 107-114 www.pharmacognosyjournal.in

Received: 10-09-2025 Accepted: 15-10-2025

F Nishvanth

Assistant Professor cum Ph.D Research Scholar, Department of Pharmacology, Adhiparasakthi College of Pharmacy (Affiliated to the Tamil Nadu Dr. M. G. R. Medical University, Chennai), Melmaruvathur, Tamil Nadu, India

D Nagavalli

Principal, Professor and Head, Department of Pharmaceutical Chemistry, Adhiparasakthi College of Pharmacy (Affiliated to The Tamil Nadu Dr. M. G. R. Medical University, Chennai), Melmaruvathur, Tamil Nadu, India.

B Prem Kumar

Professor and Head,
Department of Pharmacology,
K. K. College of Pharmacy
(Affiliated to The Tamil Nadu
Dr. M. G. R. Medical
University, Chennai),
Gerugambakkam,
Tamil Nadu, India

Corresponding Author: F Nishvanth

Assistant Professor cum Ph.D Research Scholar, Department of Pharmacology, Adhiparasakthi College of Pharmacy (Affiliated to the Tamil Nadu Dr. M. G. R. Medical University, Chennai), Melmaruvathur, Tamil Nadu, India

Assessing the impact of solvent polarity on the phytochemical profile of *Hygrophila auriculata* leaf extracts

F Nishvanth, D Nagavalli and B Prem Kumar

DOI: https://www.doi.org/10.33545/2664763X.2025.v7.i2b.75

Abstract

The research explores the phytochemical profile of *Hygrophila auriculata* leaf extract through the application of solvents with differing polarities, aiming to uncover biologically active constituents with therapeutic potential. Leaves of *Hygrophila auriculata* were subjected to extraction using solvents ranging from non-polar to highly polar namely petroleum ether (low polarity), chloroform, ethyl acetate, ethanol, and water (high polarity). Phytochemical screening identified a diverse array of bioactive compounds namely alkaloids, flavonoids, saponins, phenolics, tannins, glycosides, and terpenoids whose relative abundance varied depending on the solvent used during extraction. The ethanol extract demonstrated the most comprehensive array of phytochemicals, particularly rich in phenolic compounds, tannins, alkaloids, carbohydrates, terpenoids, and flavonoids compounds widely recognized for their antioxidant capabilities. These findings affirm that *Hygrophila auriculata* harbors a diverse set of bioactive agents potentially beneficial for managing various health conditions, including infertility. Continued investigation, particularly focusing on the isolation and structural elucidation of individual compounds, is recommended to further evaluate their pharmacological relevance.

Keywords: Hygrophila auriculata, phytochemicals, solvents, polarity

Introduction

Indian medicinal plants have long sparked academic interest, as reflected in the growing volume of research publications. However, a significant challenge remains: the precise mechanisms by which these plants exert their therapeutic effects are often not clearly understood, leading to scientific skepticism ^[1]. Many medicinal plants help mitigate the harmful effects of oxidative stress through the activity of key compounds known as antioxidants. The disease-preventive potential of these plants is largely attributed to the antioxidant properties of their bioactive constituents ^[2]. Consequently, there has been a substantial increase in efforts to isolate natural antioxidants, particularly those derived from plants, over the past decade. Notably, the mechanisms by which these plants act vary widely depending on the species ^[3].

Hygrophila auriculata (Buch. Ham.) is a thorn-armed sub-shrub in the Acanthaceae family that thrives in moist settings, particularly along marshy edges such as ditches and paddy fields. In Ayurvedic literature, the plant is known by several names, including *Ikshura*, *Ikshugandha*, *Kokilaksha*, and *Indian Cuckoo*. Within the Ayurvedic system of medicine, it is further characterized by its properties, being referred to as *Seethaveryam* and *Mathuravipaka* [4].

Distribution: Found across the world in regions such as Sri Lanka, Myanmar, Indonesia, Malaysia, and throughout the plains of India, this species typically inhabits moist environments like marshy canal edges, and is also present in the tropical Himalayas ^[5].

Taxonomy: [6]

Kingdom: Plantae

Class: Magnoliopsida

Subkingdom: Viridiplantae

• Superorder Asteranae

• Infrakingdom: Streptophyta

Order Lamiales

Superdivision: Embryophyta

Family: Acanthaceae
Division: Tracheophyta
Genus: *Hygrophila* R. Br.
Subdivision: Spermatophyta

• Species: auriculate

Fig 1: Hygrophila auriculata

Leaf of Hygrophila auriculata: [7]

Table 1: Leaf of Hygrophila auriculata

	• • •			
Feature	Description			
Loof Type	Dorsiventral and glabrous, with a noticeably			
Leaf Type	raised midrib.			
Midrib Shape	Plano-bowed; adaxial side flush, abaxial side			
(Cross-section)	broad and crescent-shaped			
Midrib Size	750 μm (median perpendicular plane), 1 μm			
Midilo Size	(parallel plane)			
Upper	Prominent; square cells with a well-developed			
Epidermis	cuticle			
Collenchyma	About 3 layers of small collenchyma cells			
(Adaxial side)	beneath the epidermis			
Parenchyma	ma Beneath the collenchyma lies 4–5 layers o			
(Adaxial side)	broad, thin-walled parenchyma cells.			
Lower				
Epidermis	Similar to adaxial epidermis			
(Abaxial)				
Collenchyma	Just beneath the abaxial epidermis, there are			
(Abaxial side)	typically one to two layers of collenchyma cells.			
Ground Tissue	"Composed of compact, wide, thin-walled			
Ground Tissue	parenchyma cells.			
Vascular	Single, elliptical in cross-section; 350 μm			
Bundle	(horizontal), 150 μm (vertical)			
Xylem	8–10 parallel rows; angular, thin-walled, narrow			
Aylelli	elements			
Phloem	A thin parenchymatous sheath occurs along the			
Pnioem	abaxial (lower) side of the xylem.			
Accessory	Two small, circular vascular strands on the upper			
Strands	(adaxial) leaf surface, each comprising a cluster			
Sualius	of xylem vessels and a small phloem nest			

Materials and methods Chemicals

In this study, all the chemicals purchased from Naresh Scientific Company, Puducherry- 605010. The chemicals used were analytical grade.

Collection and identification of plant material

The *Hygrophyla auriculata* leaves were collected by Tirunelveli region and the plant was authenticated by Dr. M. Syed Ali Fathima, Assistant Professor and Head, Sadakathullah Appa Arts and Science College, Tirunelveli.

Fig 2: Collection and powdered Hygrophila auriculata leaf

Fig 3: Extraction of leaf material

Extraction of plant material

The collected leaves were air-dried at ambient temperature until fully desiccated. Subsequently, the dried leaves were finely powdered using a mechanical grinder to increase the surface area for extraction.

The powdered material was subjected to sequential extraction using a Soxhlet apparatus, employing solvents of varying polarity to ensure comprehensive extraction of bioactive compounds. The solvents utilized, in order of increasing polarity, were petroleum ether, chloroform, ethyl acetate, ethanol, and water. Each extraction was conducted

until the solvent in the siphon tube appeared clear, indicating the exhaustion of the plant material. The extracts obtained were then concentrated under reduced pressure using a rotary evaporator to remove the solvents, yielding crude extracts for subsequent analysis.

This method ensures the efficient extraction of a wide range of phytochemicals, facilitating comprehensive phytochemical analysis.

Preliminary phytochemical analysis

The extracts were treated with the specific reagents to find out the presence of various phytoconstituents [8-40].

Table 2: Preliminary phytochemical analysis

Phytoconstituent	Test	Procedure	Observation		
Alkaloids	Dragendroff's test	Extract + Dragendroff's reagent	A precipitate red colour.		
	Hager's test	Extract + Hager's reagent	White colour		
	Mayer's test	Extract + Mayer's reagent	A creamy white/yellow precipitate		
	Wagner's test	Extract + Wagner's reagent	A brown/reddish precipitate		
	Picric acid test	Extract + 2% picric acid solution	An orange-coloured precipitate		
	Iodine Test	Extract + iodine solution	Formation of blue colour		
	Bouchardat's test	Extract + Bouchardat's reagent	Formation of brick red colour.		
	Tannic acid test	Extract +10% tannic acid solution	A buff colour precipitate		
Carbohydrates	Barfoed's test	Extract is heated with Barfoed's reagent	Form red precipitate to confirm the monosaccharides.		
	Molish's test	Extract + Molish's reagent and con. Sulphuric acid along the side of the test tube	Voilet ring appears		
	Seliwanoff's test	Extract is heated with seliwanoff's reagent	Appearance of rose red colour for the confirmation of ketoses.		
	Resorcinol test	Heat the Extract+ Resorcinol + Con.HCl	A rose red colour		
	Test for Pentoses	Heated in amixture of Extract + Con. HCl + Phloroglucinol	A red colour		
	Test for starch	Extract + 5% KOH solution	A cinary colouration		
Reducing sugars	Benedict's test	Extract + Benedict's reagent and heated	Green/ Yellow/ Red colour		
	Fehling's test	Extract + Fehling's solution A and B and heated	A red precipitate		
	Borntrager's test	Extract + Chloroform and 10% ammonia solution	A pink colour solution		
	Modified Borntrager's	Extract+ Ferric chloride and boil for few minutes +	DI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	test	Benzene + Ammonia	Blood red coloured solution		
	Legal's test	Extract + pyridine + Sodium nitroprusside + 10% Sodium hydroxide	A pink coloured solution		
	10% NaOH test	Extract + dil. H2SO4 boiled for 15min and neutralize with 10% NaOH + Fehling's solution A & B	A brick red precipitate		
	Aqueous NaOH test	Extract + aqueous NaOH solution	A yellow colour		
	Concentrated H2SO4 test	Extract + glacial acetic acid + a drop of 5% FeCL3 + conc. H2SO4	A brown ring		
	Raymond's test	Extract + dinitrobenzene in hot methanolic alkali	A violet colour		
Cardiac glycosides		Extract + glacial acetic acid + 5% ferric chloride + conc. H2SO4	A blue coloured solution		
	Kedee's test	Extract + methanol + alcoholic KOH + 1% alcoholic 3,5 dinitrobenzene and heated	A disappearing violet colour		
	Test for Cardenolides	Extract + pyridine + Sodium nitroprusside + 20% NaOH	A red colour, fades to brownish yellow		
	Bromine water test	Extract + bromine water	A yellow precipitate		
	Baljet test	Extract + Baljet's reagent	A yellow-orange colour		
Proteins and Amino acids	Biuret test	Extract + 2% copper sulphate + 95% ethanol + KOH pellets	A pink coloured solution		
	Millon's test	Extract + few drops of Millon's reagent	A white precipitate		
	Ninhydrin test	Extract + Ninhydrin solution	A purple-coloured solution {Amin acids}		
	Xanthoprotein test	Extract + Few drops of conc. Nitric acid	A yellow -coloured solution (Aromatic amino acids)		
Flavonoids	Alkaline reagent test	Extract + 2% NaOH solution	An intense yellow colour		
	Ammonium hydroxide test	Extract + 10% ammonium hydroxide solution	A yellow fluorescence		
	Lead acetate test	Extract + 10% lead acetate solution	A yellow precipitate		
		Extract + 5mL alcohol + Fragments of magnesium ribbon + few drops of conc. HCl	A pink to crimson coloured solution		
	Shibata's reaction	Extract + 50% methanol by heating + metal magnesium + 5-6 drops of conc. HCl	A red colour {flavonols}, orange colour {flavones}		

	I =		
	Ferric chloride test	Extract + 10% ferric chloride solution	A green precipitate
	Pew's test	Extract + 0.1gm metallic zinc + conc. H2SO4	A red colour {flavonols}
	Zinc-hydrochloride reduction test	Extract + pinch of zinc dust + conc. HCl along the side of test tube	Magenta colour appears
	Ammonia test	Filtrate + dil. Ammonia solution + conc. H2SO4	A yellow colour
	Conc. H2SO4 test	Extract + conc. H2SO4	An orange colour
Phenolic compounds	Iodine test	Extract + few drops of dil. Iodine solution	A transient red colour
compounds	Ferric chloride test	Extract + few drops 5% ferric chloride	Dark green/bluish black colour
	Gelatin test	Extract + 1% gelatin solution + 10% NaCl	A white precipitate
	Lead acetate test	Extract + 10% lead acetate solution	A white precipitate
	Ellagic Acid Test	Extract + 5% glacial acetic acid + 5% sodium nitrite solution	Solution turns muddy / Niger brown precipitate
	Potassium dichromate test	Extract + few drops of potassium dichromate solution	A dark colour
	Hot water test	Warm water in beaker + mature plant part is dipped + warmed for a min.	Black or brown colour ring at the junction of dipping
	Test for Cartenoids	Extract + chloroform, (vigorously shaken and filtered). Filtrate + conc. H2SO4	A blue colour at the interface
Tannins	Gelatin test	Extract +1% gelatin solution + 10% NaCl	A white precipitate
	Braymer's test	Extract+ distilled water + 10% Ferric chloride solution	Blue-green colour
	10% NaOH test	Extract + 10% NaOH + shaken well	Formation of emulsion {Hydrolysable tannins}
	Bromine water test	bromine water + plant extract	Decoloration of bromine
	Lead sub acetate test	Extract + lead sub acetate solution Extract + sodium acid phosphate, heated, allowed to cool +	A creamy gelatinous precipitate
	Phenazone test	filtered); filtrate + 2% solution of phenazone	Precipitation formation A water-soluble iron-tannin
	Mitchell's test	Extract solution + iron + sodium tartarate (+ ammonium acetate solution)	complex, which is insoluble in solution of ammonium acetate
Phlobatannins	HCl test	Extract + 1% HCl (boiled)	A red precipitate
Saponins	Foam test	Plant extract + 2mL water (vigorously shaken)	Persistent foam
	NaHCO3 test	Plant extract + sodium bicarbonate solution + distilled water (vigorously shaken)	Stable honeycomb like froth
	Olive oil test	Extract + distilled water; shaken vigorously + few drops of olive oil + shaken vigorously	Appearance of foam
	Haemolysis test	Drop of fresh blood on glass slide + plant extract	Zone of hemolysis
Phytosterols	Salkowski's test	Extract + few drops of conc. H2SO4 (Shaken well and	Red colour (in lower layer)
Thytosterois		allowed to stand)	rica colour (in lower layer)
	Libermann-Burchard's test	Extract + acetic anhydride + 1-2 drops of conc. H2SO4 (along the side of test tube)	An array of colour change
	Acetic anhydride test	Plant extract + acetic anhydride + conc. H2SO4	Change in colour from violet to blue/green
	Hesse's response	Extract + chloroform + conc. H2SO4	Pink ring / Red colour (in lower chloroform layer)
GL 1	Sulphur test	Extract solution + pinch of sulphur powder	Sulphur sinks to the bottom
Cholesterol		Extract + chloroform + acetic anhydride + conc. H2SO4	A red-rose colour
Terpinoides		Chloroform + plant extract + conc. H2SO4 (boiled on water bath)	A grey coloured solution
Triterpinoides	Salkowski's test		Golden yellow layer (at the bottom
Diterpenes	Copper acetate test	Plant extract + copper acetate solution	Emerald green colour
Lignins	Labat test	Extract solution + gallic acid Extract solution + 2% furfural debyde solution	An olive -green colour A red colour
	Furfuraldehyde test	Extract solution + 2% furfuraldehyde solution Extract + saturated solution of antimony trichloride in	A red colour A blue-green colour eventually
Carotenoids	Carr-Price reaction	chloroform	changing to red
Quinones	Alcoholic KOH test	Plant extract + alcoholic potassium hydroxide	Red to blue colour
	Conc. HCl test Sulphuric acid test	Plant extract + conc. HCl	A green colour
	Sulphuric acid test	Extract + isopropyl alcohol + a drop of conc. H2SO4 10% ammonia solution + plant extract (shaken vigorously	A red colour A pink, violet, or red coloured
Anthraquinones	Borntrager's test	for 30 sec.)	solution
	Ammonium hydroxide test	Extract + isopropyl alcohol + conc. ammonium hydroxide solution	Formation of red colour after 2 min.
Anthocyanins	HCl test	Extract +2N HCl	Pink-red sol. which turns blue- violet after addition of ammonia
Leuconthocyanins Carbovylic acid	Isoamyl alcohol test	Extract + isoamyl alcohol	Upper layer appears red
Carboxylic acid	Effervescence test	Extract + sodium bicarbonate solution Moistened extract is taken in test tube, mouth of test tube is	Appearance of Effervescence
Coumarins	NaOH paper test	covered with 1N NaOH treated filter paper, heated for few min. in water bath	Yellow fluorescence from paper under the UV light

	NaOH test	Plant extract + 10% NaOH + Chloroform	A yellow colour
Emodins		Plant extract + NH4OH + benzene	A red colour
Gums and Mucilages	Alcohol test	Extract + distilled water + absolute alcohol (constant stirring)	White or cloudy precipitate
Resins	Acetic anhydride test	Extract + Acetic anhydride solution + conc H2SO4	Orange to yellow
	Turbidity test	Extract dissolved in acetone, poured in distilled water	Turbidity
Fixed Oils and Fat Spot test/ Stain test		Little quantity of plant extract is pressed in between to filter papers	Oil stain on the paper
Saponification test		Extract + few drops of 0.5N alcoholic KOH + A drop of phenolphthalein (Heated for 2hr.)	Soap formation or partial neutralization of alkali
Volatile Oils	Fluorescence test	Extract, filtered till saturation, exposed to UV light	Bright pinkish fluorescence

Results

Table 3: Results of the phytochemical analysis

		Extract					
Phytoconstituent	Test	Pet. Ether	Chloroform	Ethyl acetate	Ethanol	Water	
Alkaloids	Dragendroff's test	+	+	+	+	+	
	Hager's test	+	+	+	+	+	
	Mayer's test	+	+	+	+	+	
	Wagner's test	+	+	+	+	+	
	Picric acid test	+	+	+	+	+	
	Iodine Test	+	+	+	+	-	
	Bouchardat's test	_	_	-	+	_	
	Tannic acid test	_	+	_	+	_	
Carbohydrates	Barfoed's test	+	+	+	+	+	
2 2 2 3 2 2	Molish's test	+	+	+	+	+	
	Seliwanoff's Test	+	+	-	+	+	
	Resorcinol test	+	+	+	+	+	
	Test for pentoses	-	-	-	+	_	
	Test for starch	_	_	_	+	_	
Reducing sugars	Benedict's test		+	-	+	+	
Reducing sugars	Fehling's test		+	-	+	+	
Glycosides	Borntrager's test	+		+	+	1	
Glycosides	Modified Borntrager's test		+	+		+	
	Legal's test	+	+	-	+	+	
	10% NaOH test	+	+	-		-	
		+	+	+	-	-	
	Aqueous NaOH test		+	+	+	+	
	Con. H2SO4 test	-	+	-	+	-	
G 1: G1 :1	Raymond's test	-	-	-	-	-	
Cardiac Glycosides	Keller-Killani test	+	+	+	+	+	
	Kedee's test	-	+	-	-	+	
	Test for Cardenolides	-	-	-	+	-	
	Bromine water test	+	+	+	+	+	
	Baljet test	-	+	-	-	-	
Proteins and Amino acids	Biuret test	+	-	-	-	-	
	Millon's test	+	-	-	-	-	
	Ninhydrin test	-	-	-	-	-	
	Xanthoproteic test	-	-	-	-	-	
Flavonoids	Alkaline reagent test	+	-	+	+	+	
	Lead acetate test	+	-	+	+	+	
	Shinoda's test	+	-	+	+	+	
	Shibata's reaction	+	-	-	-	+	
	Ferric chloride test	+	-	-	+	+	
	Pew's test	-	-	-	+	+	
	Zinc-hydrochloride reduction test	-	-	-	-	-	
	Ammonia test	+	-	+	+	+	
	Conc. H2SO4 test	+	-	-	+	-	
Phenolic compounds	Iodine test	-	-	-	+	-	
	Ferric chloride test	+	-	-	-	+	
	Gelatin test	-	-	+	+	+	
	Lead acetate test	-	+	+	+	+	
	Ellagic Acid Test	-	-	+	-	+	
	Potassium dichromate test	_	+	+	+	+	
	Hot water test	-	-	-	+	+	
	Test for Cartenoids	_	_	-	+	-	
Tannins	Gelatin test	_	_	+	+	+	
	Braymer's test	_	_	+	+	+	
	Diaymer 5 test		l .	' '	1	<u>'</u>	

	10% NaOH test	-	-	+	+	-
	Bromine water test	-	-	+	+	+
	Lead sub acetate test	-	-	-	-	-
	Phenazone test	-	-	+	-	-
	Mitchell's test	-	-	-	+	-
Phlobatannins	HCl test	-	-	-	-	-
Saponins	Foam test	-	-	-	+	+
	NaHCO3 test	-	-	-	+	+
	Olive oil test	-	-	-	+	-
	Haemolysis test	-	-	-	+	+
Phytosterols	Salkowski's test	+	-	+	+ + + + + + + + + + + + + + + + + + +	+
	Libermann-Burchard's test	+	-	+		+
	Acetic anhydride test	+	-	+	+	+
	Hesse's response	-	-	-	-	-
	Sulphur test	-	+	+	-	+
Cholesterol	Test :1	+	-	+	-	-
Terpenoids	Test :2	+	-	+	+	+
Triterpenoids	Salkowski's test	+	-	+	+	+
Diterpenes	Copper acetate test	-	-	-	+	-
Lignins	Labat test	-	+	-	-	-
	Furfuraldehyde test	-	-	-	-	-
Carotenoids	Carr-Price reaction	-	-	-	+	-
Quinones	Alcoholic KOH test	+	+	+	+	+
	Conc. HCl test	+	+	+	+ + + + + + + + + + + + + + + + + + +	+
	Sulphuric acid test	+	+	+	+	+
Anthraquinones	Borntrager's test	+	+	+	+	+
	Ammonium hydroxide test	+	+	+	+	+
Anthocyanins	HCl test	-	-	-	-	-
Leuconthocyanins	Isoamyl alcohol test	-	-	-	-	1
Carboxylic acid	Effervescence test	-	-	-	-	-
Coumarins	NaOH paper test	-	-	-	-	-
	NaOH test	-	-	-	-	-
Emodins	Test:1	-	-	-	-	-
Gums and Mucilages	Alcohol test	-	-	-	-	-
Resins	Acetic anhydride test	-	-	-	+	-
	Turbidity test	-	-	-	-	-
Fixed Oils and Fat	Spot test	-	-	-	-	-
	Saponification test	-	-	-	-	-
Volatile Oils	Fluorescence test	+	-	-	+	-

(+) indicates the compound which is present, (-) indicates the compound which is absent

Discussion

The research indicates that the leaves of *Hygrophila auriculata* harbor a variety of bioactive compounds, which may offer health benefits for humans. These compounds could possess therapeutic properties, particularly in addressing infertility issues. Their presence aligns with the traditional use of the entire plant in treating various health conditions. This underscores the notion that natural plant-based substances often contain elements that contemporary science is beginning to explore and validate. Future research will likely concentrate on isolating and purifying the specific bioactive compounds responsible for the observed medicinal effects. Techniques such as chromatography (e.g., HPLC or TLC) may be employed to separate and identify these compounds' structures.

Conclusion

The phytochemical analysis of *Hygrophila polysperma* has identified a diverse array of bioactive compounds, including alkaloids, flavonoids, phenolic acids, glycosides, and other secondary metabolites. These compounds are believed to contribute to the plant's therapeutic properties, particularly in treating conditions like infertility. This aligns with the traditional use of the whole plant in various medicinal practices. The presence of these bioactive substances supports the notion that natural plant products often contain

compounds that modern science is beginning to understand and validate. Future research will likely focus on isolating and purifying these specific bioactive compounds to fully comprehend their molecular structures, potency, and mechanisms of action. Techniques such as chromatography (e.g., HPLC or TLC) may be employed for this purpose. Subsequent in vitro and *in vivo* studies will be essential to evaluate the effectiveness and safety of these compounds in human health applications.

Referances

- 1. Bhutani KK, Gohil VM. Natural products drug discovery research in India: Status and appraisal. Ind J Exp Biol 2010;48:199-207.
- 2. Valsala P, Deepika E, Santhy KS. Enzymatic and nonenzymatic antioxidant activities of methanol extract of *Mentha piperital*. J Adv Sci Res 2021;12(1):140-144.
- Sharma A, Patel VK, Chaturvedi AN. Vibriocidal activity of certain medicinal plants used in Indian folklore medicine by tribals of Mahakoshal region of central India. Indian J Pharmacol 2009;41(3):129-133.
- 4. Dhanalakshmi S, Harikrishnan N, Srinivasan N, Pandian P, Tanisha BA, Kumar MT, *et al*. A perspective overview on *Hygrophila auriculata*. Pharmacogn J 2020;12(6s).

- Kirtikar KR, Basu BD. Indian medicinal plants (Vol. 1-4). Dehradun, India: International Book Distributors Booksellers & Publishers, 1999.
- 6. Sarvananda, Amal D. Premarathna, et.al. Ethnopharmacolological potential and medicinal uses of *Hygrophila auriculata*. Journal of Ayurvedic and Herbal Medicine 2018;4(4): 185-188.
- 7. Vliethink A. Bioassay method in natural product and drug development Netherland: Kluwere Academic publishers, 2001.
- 8. Junaid R Shaikh and Matsyagandha Krishnarao Patil (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical studies 8(2):603-608. DOI:10.22271/chemi.2020.v8.i2i.8834
- 9. Raaman N. Phytochemical Techniques. New India Publishing Agency, New Delhi, 2006, 19-24.
- Emran TB, Mir MN, Rahman A, Zia Uddin, Islam M. Phytochemical, Antimicrobial, Cytotoxic, Analgesic and Anti-inflammatory Properties of Azadirachta indiaca: A Therapeutic Study. Journal of Bioanalysis and Biomedicine. 2015;12:1-7.
- 11. Evans WC. Trease and Evans Pharmacognosy. 16th Edn. Saunders Elsevier, 2009, 135-415. 10. Azwinda NN. A Review on the Extraction Method Use in Medicinal Plants, Principle, Strength and Limitation. Medicinal and Aromatic Plants. 2015;4(3):1-6.
- 12. Dhanani T, Shah S, Gajbhiye NA, Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry. 2017;10:1193-1199.
- Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and Extraction: A Review. Internationale Pharmaceutica Sciencia. 2011;1(1):98 106.
- 14. Auwal MS, Saka S, Mairiga IA, Sanda KA, Shuaibu A and Ibrahim A. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinary Research Forum. 2014;5(2):95-100.
- 15. Deshpande PK, Gothalwal R, Pathak AK. Phytochemical Analysis and Evaluation of Antimalarial Activity of Azadirachta indica. The Pharma Innovation. 2014;3(9):12-16.
- 16. Indhumati V, Perundevi S, Vinoja BN, Manivasagan, Saranya K, Ramesh, Babu NG. Phytochemical Screening and Antimicrobial Activity of Fresh and Shade Dried Leaves of Azaadirachta indica. International Journal of Innovations in Engineering and Technology. 2018;11(3):27-32.
- 17. Bhatt S, Dhyani S. Preliminary Phytochemical Screening of Ailanthus excelsa Roxb. International Journal of Current Pharmaceutical Research. 2012;4(1):87-89.
- 18. Basumatary AR. Preliminary Phytochemical Screening of some compounds from plant stem bark extracts of Tabernaemontana divaricata Linn. used by Bodo Community at Kokrajhar District, Assam, India. Archives of Applied Science Research. 2016;8(8):47-52.
- 19. Obouayeba AP, Diarrassouba M, Soumahin EF, Kouakou TH. Phytochemical Analysis, Purification and Identification of Hibiscus Anthocyanins. Journal of

- Pharmaceutical, Chemical and Biological Sciences. 2015;3(2):156-168.
- 20. Sadasivam S, Manickam A, Biochemical methods. Edn 3, New Age International Limited, Publishers, New Delhi, 2005, 1-4.
- 21. Audu SA, Mohammad I, Kaita HA. Phytochemical screening of the leaves of Lophira lanceolata (Ochanaceae). Life Science Journal. 2007;4(4):75-79.
- 22. Singh V, Kumar R. Study of Phytochemical Analysis and Antioxidant Activity of Allium sativum of Bundelkhand Region. International Journal of Life Sciences Scientific Research. 2017;3(6):1451-1458.
- 23. Jagessar RC. Phytochemical screening and chromatographic profile of the ethanolic and aqueous extract of Passiflora edulis and Vicia faba L. (Fabaceae). Journal of Pharmacognosy and Phytochemistry. 2017;6(6):1714-1721
- 24. Gul R, Jan SU, Syed F, Sherani F, Nusrat Jahan. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. The Scientific World Journal; 2017, 1-7.
- 25. Vimalkumar CS, Hosagaudar VB, Suja SR, Vilash V, Krishnakumar NM, Latha PG. Comparative preliminary phytochemical analysis of ethanolic extracts of leaves of Olea dioica Roxb., infected with the rust fungus Zaghouania oleae (E.J. Butler) Cummins and non-infected plants. Journal of Pharmacognosy and Phytochemistry. 2014;3(4):69-72.
- 26. Pant DR, Pant ND, Saru DB, Yadav UN, Khanal DP. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J Intercult Ethnopharmacol. 2017;6(2):170-176.
- 27. Kumar RS, Venkateshwar C, Samuel G, Rao SG. Phytochemical Screening of some compounds from plant leaf extracts of Holoptelea integrifolia (Planch.) and Celestrus emarginata (Grah.) used by Gondu tribes at Adilabad District, Andhrapradesh, India. International Journal of Engineering Science Invention. 2013;2(8):65 70.
- 28. Kumar R, Sharma S, Devi L. Investigation of Total Phenolic, Flavonoid Contents and Antioxidant Activity from Extract of Azadirachta indica of Bundelkhand Region. International Journal of Life Sciences and Scientific Research. 2018, 4(4):1925-1933.
- 29. Uma KS, Parthiban P, Kalpana S. Pharmacognostical and Preliminary Phytochemical Screening of Aavaarai Vidhai Chooranam. Asian Journal of Pharmaceutical and Clinical Research. 2017;10(10):111-116.
- Ray S, Chatterjee S, Chakrabarti CS. Antiproliferative Activity of Allelo chemicals Present in Aqueous Extract of Synedrella nodiflora (L.) Gaertn. In Apical Meristems and Wistar Rat Bone Marrow Cells. Iosr Journal of Pharmacy. 2013;3(2):1-10.
- 31. Savithramma N, Rao ML, Suhrulatha D. Screening of Medicinal Plants for Secondary Metabolites. Middle-East Journal of Scientific Research. 2011;8(3):579-584.
- 32. Maria R, Shirley M, Xavier C, Jaime S, David V, Rosa S *et al.* Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen

- native species from Guayas province Ecuador. Journal of King Saud University Science. 2018;30:500-505.
- 33. Pandey A and Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacognosy Phytochemistry. 2014;2(5):115-119.
- 34. Pooja S, Vidyasagar GM. Phytochemical screening for secondary metabolites of Opuntia dillenii Haw. Journal of Medicinal Plants Studies. 2016;4(5):39-43
- 35. Tyagi T. Phytochemical Screening of Active Metabolites Present in Eichhornia Crassipes (Mart.) Solms and *Pistia stratiotes* (L.): Role in Ethanomedicine. Asian Journal of Pharmaceutical Education and Research. 2017;6(4):40-56.
- 36. Santhi K, Sengottuvel R. Qualitative and Quantitative Phytochemical analysis of Moringa concanensis Nimmo. Intenational Journal of Current Microbiology and Applied Sciences. 2016;5(1):633-640.
- 37. Mallhi TH, Qadir MI, Khan YH, Ali M. Hepatoprotective activity of aqueous methanolic extract of Morus nigra against paracetamol-induced hepatotoxicity in mice. Bangladesh Journal of Pharmacology. 2014;9:60-66.
- 38. Nanna RS, Banala M, Pamulaparthi A, Kurra A, Kagithoju S. Evaluation of Phytochemicals and Fluorescent Analysis of Seed and Leaf Extracts of Cajanus cajan L. International Journal of Pharmaceutical Sciences Review and Research. 2013;22(1):11-18.
- 39. Rahman MA, Rahman MA, Ahmed NU. Phytochemical and biological activities of ethanolic extract of C. hirsute leaves. Bangladesh Journal of Scientific and Industrial Research. 2013;48(1):43-50.
- Kumar V, Jat RK. Phytochemical Estimation of Medicinal Plant Achyranthes aspera Root. International Journal of Research in Pharmacy and Pharmaceutical Sciences. 2018;3(1):190-193.